
CHAPTER 4

Back and forth

1. Categoricity and Vaught’s Test

Certain theories return again and again in model theory, because from a model-theoretic
perspective they have many desirable properties. In this chapter we will discuss two of them.

One property both theories in this chapter share is that they are complete. (Recall that
an L-theory T is complete if it is consistent and for any L-sentence ϕ we have either T |= ϕ or
T |= ¬ϕ.) Not many theories occurring in mathematics have this property, so if one can find a
natural example then this is something special.

But how could one show that a theory is complete? For this one often applies Vaught’s
Test.

Definition 4.1. Let κ be an infinite cardinal and let T be a theory with models of size κ.
We say that T is κ-categorical if any two models of T of cardinality κ are isomorphic.

Theorem 4.2. (Vaught’s Test) Let T be a consistent L-theory with no finite models that
is κ-categorical for some infinite cardinal κ ≥ |L|. Then T is complete.

Proof. Suppose T is not complete; then there is a sentence ϕ such that T 6|= ϕ and
T 6|= ¬ϕ. This means that there are models M and N of T such that M |= ϕ and N |= ¬ϕ.
Since κ ≥ |L| we can use the upward and downwards Skolem-Löwenheim theorems to arrange
that both M and N have cardinality κ. But this contradicts the κ-categoricity of T . �

Vaught’s Test reduces the problem of showing completeness to the problem of showing
categoricity. For the latter purpose we often use a technique called back and forth: the idea is
to construct an isomorphism between two models of the same size by some inductive procedure.
This is best illustrated through the examples.

2. Dense linear orders

The theory DLO of dense linear orders without endpoints is the theory in the language <
saying that:

(1) < defines an ordering: if x < y then not x = y and not y < x, and if x < y and y < z
then x < z.

(2) The order < is linear: x < y or x = y or y < x.
(3) It is dense: this says that x < y implies that there is a z with x < z < y.
(4) It has no endpoints: for every x there are y and z such that y < x < z.

Examples are (Q, <) and (R, <).
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Definition 4.3. Let M and N be two L-structure. A function f :A → N with A =
{a1, . . . , an} a finite subset of M is called a local isomorphism if

M |= ϕ(a1, . . . , an)⇔ N |= ϕ(f(a1), . . . , f(an))

holds for every atomic (or, equivalently, quantifier-free) L-formula ϕ(x1, . . . , xn).

By considering the formula xi = xj we see that local isomorphisms are injective.

Proposition 4.4. Let f :M → N be a local isomorphism between two models M and N of
DLO. For any m ∈M there is a local isomorphism g:A ∪ {m} → N with g � A = f .

Proof. Let M and N be two dense linear orders without endpoint and f :A ⊆ M → N
be a local isomorphism. For DLO the latter just means that f preserves and reflects the order
relation <.

Our task is to show that for any m ∈ M we can extend the local isomorphism f to one
whose domain includes m. For this we put A0: = {a ∈ A : a < m} and A1: = {a ∈ A : a > m}
and make some case distinctions:

(i) m ∈ A. In this case we can simply put g: = f .
(ii) A0 = A. In this case m is larger than any element in A and we use that N has no

endpoints to find an element n ∈ N which is larger than any element in f(A). Then
we put g(m): = n (and on all elements in A the function g is defined in the same way
as f).

(iii) A1 = A. In this case m is smaller than any element in A and we use that N has no
endpoints to find an element n ∈ N which is smaller than any element in f(A). Then
we put g(m): = n.

(iv) Neither A0 nor A1 is the whole of A or empty. Let a0 be the largest element of A0 and
a1 be the smallest element of A1. Using that N is dense we find an element n ∈ N
such that f(a0) < n < f(a1). Then we put g(m): = n.

�

Theorem 4.5. The theory DLO is ω-categorical.

Proof. Let M and N be two countable dense linear orders without endpoints. Fix enu-
merations M = {m0,m1, . . .} and N = {n0, n1, . . .}. We will construct an increasing sequence
of local isomorphisms fk from some subset of M to N such that mi belongs to the domain of
f2i and ni belongs to the codomain of f2i+1. Then f =

⋃
i fi will be the desired isomorphism

between M and N . We start with f0 = ∅.

So suppose we have constructed fk and we want to construct fk+1. If k + 1 = 2i, then
we apply the previous proposition on mi and fk to construct a local isomorphism fk+1 which
extends fk and whose domain includes mi (this is the forth in back and forth).

If k + 1 = 2i + 1, then we consider f−1
k , which is a local isomorphism from some finite

subset of N to M . So by the previous proposition there is a local isomorphism g whose domain
includes both ni and the image of fk. Then we put fk+1 = g−1, which is a local isomorphism
as desired. �

Corollary 4.6. The theory DLO is complete.
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3. Algebraically closed fields

Recall that a field K is called algebraically closed if every non-constant polynomial has a
root in K. Throughout this section we will fix some characteristic, which could be either 0 or
some prime p. We will write ACF0 for the theory of fields of characteristic 0, while ACFp is
the theory of algebraically closed fields of characteristic p.

3.1. Recap on fields. Consider an inclusion K ⊆ L of fields. Recall that L can be
considered as a K-vector space and that we write [K:L] for its dimension.

Proposition 4.7. If we have two field extensions K ⊆ L ⊆M , then [M :K] = [M :L][L:K].

If K ⊆ L and ξ ∈ L, then there are two possibilities:

(1) ξ is algebraic over K. This means that there is a polynomial p(x) with coefficients from
K such that p(ξ) = 0. In this case we can consider the monic polynomial m(x) ∈ K[x]
with m(ξ) = 0 which has least possible degree: this is called the minimal polynomial
of ξ. This polynomial has to be irreducible and K(ξ), the smallest subfield of L which
contains both K and ξ, is isomorphic to K[x]/(m(x)). In this case [K(ξ):K] is finite.

(2) ξ is transcendental over K. In this case K(ξ) is isomorphic to the quotient field K(x)
and [K(ξ):K] is infinite.

An extension K ⊆ L is called algebraic if all elements in L are algebraic over K. From
Proposition 4.7 it follows that:

(1) K(ξ) is algebraic over K precisely when ξ is algebraic over K.
(2) If K ⊆ L and L ⊆M are two field extensions and they are both algebraic, then so is

K ⊆M .

3.2. Algebraic closure.

Definition 4.8. If K ⊆ L is a field extension, then L is an algebraic closure of K, if L is
algebraic over K, but no proper extension of L is algebraic over K.

Theorem 4.9. Algebraic closures are algebraically closed.

Proof. Let L be the algebraic closure of K and p(x) be a non-constant polynomial with
coefficients from L without any roots in L. Without loss of generality we may assume that p(x)
is irreducible (otherwise replace p(x) with one of its irreducible factors); but then L[x]/(p(x))
is a proper algebraic extension of L and K, which is a contradiction. �

Theorem 4.10. Every field K has an algebraic closure.

Proof. Let X the collection of algebraic field extensions of K and order by embedding of
fields. We restrict attention to those fields whose cardinality is bounded by the maximum of
|K| and ℵ0, and therefore X is a set (essentially). Clearly, every chain of embeddings has an
upper bound in X, so by Zorn’s Lemma X has a maximal element L. This field is an algebraic
closure of X: for if L ⊂ M is a proper extension of fields and ξ ∈ M − L, then ξ cannot be
algebraic over K. For otherwise L ⊂ L(ξ) ∈ X, contradicting maximality of L. �

Theorem 4.11. Algebraic closures are unique up to (non-unique) isomorphism.
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Proof. By a back and forth argument. Let L and M be algebraic closures of K. Since
L and M must have the same infinite cardinality κ = max(|K|,ℵ0), we can fix enumerations
{li : i ∈ κ} and {mi : i ∈ κ} of L and M , respectively. By induction on i ∈ κ we will construct
an increasing sequence of isomorphisms fi:Li → Mi between subfields of L and M such that⋃
Li = L and

⋃
Mi = M . We start by declaring f0 to be isomorphism between the isomorphic

copies of K inside L and M ; and at limit stages we simply take the union.

If i + 1 = 2j, then look at the minimal polynomial m(x) = anx
n + an−1x

n−1 + . . . + a0
of lj over Li: such a thing exists because L is algebraic over K and hence over Li. Because
M is algebraically closed, there exists a root m ∈ M of the polynomial n(x) = fi(an)xn +
fi(an−1)xn−1 + . . .+ f(a0); since fi is an isomorphism, the polynomial n(x) is irreducible over
Mi and n(x) must be the minimal polynomial of m over Mi. So we can extend the isomorphism
by sending lj to m:

fi+1:Li(lj) ∼= Li[x]/(m(x)) ∼= Mi[x]/(n(x)) ∼= Mi(m).

If i+ 1 = 2j + 1, then we can use a similar argument to show that the isomorphism fi can
be extended to one whose codomain includes mj . �

3.3. Categoricity. A similar argument shows:

Theorem 4.12. The theories ACF0 and ACFp are λ-categorical for any uncountable λ.

Proof. Let L and M be two algebraically closed fields of the same uncountable cardinality
λ and fix enumerations {li : i ∈ λ} and {mi : i ∈ λ} of L and M , respectively. By induction on
i ∈ λ we will construct an increasing sequence of isomorphisms fi:Li → Mi between subfields
of L and M of cardinality strictly less than λ such that

⋃
Li = L and

⋃
Mi = M . We start by

declaring f0 to be isomorphism between the isomorphic copies of Q (if the characteristic is 0)
or Fp (if the characteristic is p) inside L and M ; and at limit stages we simply take the union.

If i + 1 = 2j, then there are two possibilities for lj vis-à-vis Li: it can either be algebraic
or transcendental. If it is algebraic, we proceed as in the proof of the previous theorem. We
look at the minimal polynomial m(x) = anx

n + an−1x
n−1 + . . . + a0 of lj over Li and use

that M is algebraically closed to find an element m ∈ M with minimal polynomial n(x) =
fi(an)xn + fi(an−1)xn−1 + . . .+ f(a0) over Mi. And we extend the isomorphism by sending lj
to m:

fi+1:Li(li) ∼= Li[x]/(m(x)) ∼= Mi[x]/(n(x)) ∼= Mi(m).

If, one the other hand, lj is transcendental over Li, we use the fact that |Mi| < |M | to deduce
that M also contains an element m ∈M which transcendental over Mi. And the isomorphism
can be extended by sending lj to m:

fi+1:Li(lj) ∼= Li(x) ∼= Mi(x) ∼= Mi(m).

If i+ 1 = 2j + 1, then we can use a similar argument to show that the isomorphism fi can
be extended to one whose codomain includes mj . �

Corollary 4.13. The theories ACF0 and ACFp are complete.

4. Exercises

Exercise 1. Show that DLO is not λ-categorical for any λ > ω.

Exercise 2. Show that the embedding (Q, <) ⊆ (R, <) is elementary.
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Exercise 3. By a graph we will mean a pair (V,E) where V is a non-empty set and E is
a binary relation on V which is both symmetric and irreflexive. We will refer to the elements
of V as the vertices and the elements of E as the edges. If xEy holds for two x, y ∈ V , we say
that x and y are adjacent.

A graph (V,E) will be called random if for any two finite sets of vertices X and Y which
are disjoint there is a vertex v 6∈ X ∪ Y which adjacent to all of the vertices in X and to none
of the vertices in Y . We will write RG for the theory of random graphs.

Show that the theory RG is ω-categorical, and hence complete.

Exercise 4. Show that the theory ACF0 is not ω-categorical.

Exercise 5. Let ϕ be a sentence in the language of rings. Show that the following are
equivalent:

(i) ϕ is true in the complex numbers.
(ii) ϕ is true in every algebraically closed field of characteristic 0.
(iii) ϕ is true in some algebraically closed field of characteristic 0.
(iv) There are arbitrarily large primes p such that ϕ is true in some algebraically closed

field of characteristic p.
(v) There is an m such that for all p > m, the sentence ϕ is true in all algebraically closed

fields of characteristic p.


